内容简介:
近年来,基于深度学习方法的自然语言处理(NLP)已逐渐成为主流。本书共8章,主要介绍自然语言处理任务中的深度学习技术,包含深度学习理论基础、深度学习的软件框架、语言模型与词向量、序列模型与梯度消失爆炸、卷积神经网络在NLP领域的应用、Seq2Seq模型与Attention机制、大规模预训练模型、预训练语言模型BERT,还给出了自然语言处理技术的高级应用和开发实例,并收录了基于PyTorch深度学习框架的部分实践项目。 本书既可作为人工智能、计算机科学、电子信息工程、自动化等专业的本科生及研究生教材,也可作为自然语言处理相关领域的研究人员和技术人员的参考资料。
下载地址:
[ARFormslite id=100]