内容简介:
本书涉及近期机器学习领域内的最新进展,通过对常用数据集的转换和工具库的使用,帮助构建实用的机器学习系统。内容包括如何在原始数据中准确发掘出模式。先从回顾Python机器学习的知识开始,接着了解相关的工具库。可以快速掌握数据集上真实的项目,掌握建模方法,创建推荐系统。全书共14章。第1章介绍机器学习和Python基础知识;第2章使用真实数据进行分类研究;第3章解释如何使用回归算法处理数据;第4章介绍如何使用logistic回归来确定某个问题的用户答案好不好;第5章介绍数据降维技术;第6章介绍聚类,并使用它来查找给定文本的类似新闻报道;第7章介绍如何建立基于客户产品评级的推荐系统;第8章介绍神经网络和深度学习相关的基本原理,以及使用TensorFlow进行CNN和RNN的示例;第9章解释朴素贝叶斯的工作原理,以及如何用它对tweet进行分类;第10章介绍主题建模;第11章和第12章分别讲解如何对音乐和图像进行分类;第13章探索强化学习方法;第14章介绍如何利用云技术来构建更复杂的模型。
下载地址:
[ARFormslite id=100]